βαρρ

 

TABLE OF CONTENTS

Geology and Basin Analysis of

Western Offshore Libya

 

(Blocks O1, O2, O3, O4, O14, O15, O16 and NC41)

 

VOLUME ONE

                                 

                   

Subject                                                      Page    

 

Table of Contents and List of Figures                         i

                                                     

1. INTRODUCTION

 

1.1  Background to the project                                 1

1.2  Location of the study area                                3

1.3  History of previous research                              4

1.4  History of hydrocarbon exploration                        8

     A) Elf-Aquitane company activities and results            8       

     B) Esso and Sirte Oil Company activities and results      9

     C) Agip company activities and results                    9

     D) Total activities and results                          10

1.5  Nature of database                                       11

1.6  Methodology                                              12

     A) Geophysical method                                    13

     B) Geological methods                                    14

                           

                           

2.STRATIGRAPHY OF TRIPOLI-GABES BASIN

 

2.1  Introduction                                             16

2.2  Chronostratigraphy                                       18

2.3  Stratigraphy of the basin                                19

   2.3.1  Al-Azizyah Formation                                19

   2.3.2  Abu-Shaybah Formation                               20

   2.3.3  Abu-Ghaylan Formation                               21

   2.3.4  Bir Al-Ghanam Formation                             22

   2.3.5  Kiklah Formation                                    23

   2.3.6  Zebbag Formation                                    25

   2.3.7  Kef Formation                                       26

   2.3.8  Abiod Formation                                     27

   2.3.9  El-Haria Formation                                  29

   2.3.10 Metlaoui Group                                      30

       2.3.10.1  Chouabine Formation                          32

       2.3.10.2  Jirani Dolomite Formation                    33

       2.3.10.3  Faid Formation                               34

       2.3.10.4  Tajoura Formation                            35

       2.3.10.5  El-Garia Formation                           36

       2.3.10.6  Bou-Dabbous Formation                        37

   2.3.11 Cherahil Formation                                  38

          A) Cherahil “A” Member                              39

          B) Reineche Member                                  40

          C) Cherahil “B” Member                              40

   2.3.12 Souar Formation                                     41

   2.3.13 Salambo and Ketatna Formation                       42

   2.3.14 Mahmoud Formation                                   43

   2.3.15 Melqart Formation                                   44

   2.3.16 Oued Bel Khedim Formation                           45

   2.3.17 Raf-Raf and Segui Formations                        46

2.4  General comments on the stratigraphy of Sirte Basin      47

                           

     

3. REGIONAL TECTONIC FRAMEWORK

    

3.1  Introduction                                             49

3.2  From Tethys to Mediterranean (Plate tectonic model)      51

     I) Lias (Pliensbachian), 190 Ma                          53

     II) Late Jurassic (Callovian), 155 Ma                    54

     III) Jurassic-Cretaceouَ boundary, 130 Ma                55

     IV) Middle Cretaceous (Aptian), 110 Ma                   56

     V) Latه Cretaceous (Santonian-Campanian),80 Ma           57

     VI)  Cretaceous-Paleocene boundary, 65 Ma                58

     VII) Late Eocene (Priabonian)-Oligocene  35 Ma           59

     IIX) Early Miocene (Aquitanian), 20 Ma                   60

     IX) Middle Miocene (Tortonian),  10  Ma                  62

     X) Present                                               63

3.3  Physiography and topography of the Mediterranean         63

3.4  Geologic and tectonic setting of the Mediterranean

     Basin                                                    65

3.5  Regional  geology  and tectonic setting  of  the

     Pelagian Platforf                                        67

   3.5.1 Introduction                                         67

   3.5.2  Physiography and bathymetry                         67

   3.5.3  The geodynamic evolution                            68

 

                     

4.DATABASE DESCRIPTION

 

4.1  Introduction                                             79

 

4A: PETROGRAPHY

 

4.2  Methods and technique                                    79

   4.2.1  Methods and procedure                               79

   4.2.2  Techniques and microscope                           80

4.3  Microfacies description                                  81

   4.3.1  The Zebbag Formation                                81

   4.3.2  The Kef Formation                                   83

   4.3.3  The Abiod Formation                                 84

   4.3.4  The El-Haria Formation                              85

       4.3.4.1  The El-Haria 'A'                              85

       4.3.4.2  The El-Haria 'B'                              87

   4.3.5  The Metlaoui Group                                  88

       4.3.5.1  Chouabine Formation                           88

       4.3.5.2  Jirani Dolomite Formation                     93

       4.3.5.3  El-Garia Formation                            97

      4.3.6  Cherahil Formation                              110

       4.3.6.1  Cherahil 'A' Member                          110

       4.3.6.2  Reineche Member                              113

       4.3.6.3  Cherahil 'B' Member                          116

   4.3.7  Souar Formation                                    118

     

4B: DATA DESCRIPTION

     

4.4  Description of the geological and geophysical data      120

   4.4.1  Introduction                                       120

   4.4.2  Subsurface geological maps and sections            122

       4.4.2.1  The Zebbag Formation                         122

       4.4.2.2  The Kef Formation                            123

       4.4.2.3  The Abiod Formation                          125

       4.4.2.4  The El-Haria Formation                       126

           4.4.2.4.1  The El-Haria 'A' Member                126

           4.4.2.4.2  The El-Haria 'B' Member                127

       4.4.2.5  The Metlaoui Group                           128

           4.4.2.5.1  The Chouabine  Formation               130

                      A-Dolomitic wackestone facies          131

                      B-Oolitic packstone-grainstone

                        facies                               131

                      C-Lithoclast-bioclast mudstone

                        facies                               132

           4.4.2.5.2  The Jirani Dolomite Formation          133

                      A-Anhydritic dolomite and 

                        dolomitic mudstone facies            133 

                      B-Dolomite and dolomitic

                        limestone facies                     134

           4.4.2.5.3  The El-Garia Formation                 135

       4.4.2.6  The Cherahil and Souar Formation             138

   4.4.3  GRAVITY AND MAGNETIC MAPS OF THE BASIN             143

       ´.4.3.1  The Gravity Aspect                           143

       4.4.3.2  The Magnetic Aspect                          144

   4.4.4  DESCRIPTION OF THE MULTICHANNEL SEISMIC DATA       146

       4.4.4.1  Line WT-84-28                                149

       4.4.4.2  Line WT 84-10                                153

       4.4.4.3  Line WT 84-30                                158

       4.4.4.4  Line RS-86-01                                161

   4.4.5  DESCRIPTION OF THE STRUCTURAL MAPS                 164

       4.4.5.1  The structure map of base Tertiary           165

       4.4.5.2  The structure map of Lower Eocene            166

 

 

5. SUBSIDENCE HISTORY AND CRUSTAL EXTENSION MODELS

 

5.1  Introduction                                            168

5.2  Subsidence overview                                     169

5.3  Burial history analysis                                 171

5.4  Compaction                                              173

5.5  Correction for compaction (technique and method)        175

5.6  The Backstripping procedurs                             179

     A) Water depth                                          179 

     B) Sea level                                            181

5.7  Tectonic subsidence                                     184

5.8  Basement subsidence                                     189

5.9  Subsidence curves                                       191

5.10 Subsidence maps                                         193

    5.10.1  Basement subsidence rate maps                    193

    5.10.2  Cumulative basement subsidence maps              196

5.11 Observations and prediction                             197

 

 

6. THERMAL MATURATION HISTORY OF TRIPOLI-GABES BASIN

 

6.1  Introduction                                            200

6.2  Geothermal gradient of the basin                        200

6.3  Maturation of organic matter                            203

6.4  Measured maturities (TAI)                               205

6.5  The Lopatin method and predicted maturity               206

6.6  Calibration of the calculated (predicted) maturities    208

6.7  Observed and predicted maturity                         211

    6.7.1  Source rock potential of the Abiod Fm.            212 

    6.7.2  Source rock potential of the El-Haria Fm.         213

    6.7.3  Source rock potential of the Metlaoui Group       214

6.8  Summary                                                 216

                          

 

7. AN OVERVIEW OF THE MESOZOIC EVAPORITES

 

7.±  Background data on evaporites                           218

7.2  Physical properties of salt rock and terminology        219

7.3  The evaporitic basin and models of deposition           221

7.4  The Early Mesozoic evaporites of Tripoli-

     Gabes Basin                                             224

7.5  Genesis of the salt structures                          226

7.6  Salt structures in the Tripoli-Gabes Basin              229

7.7  The age determination of salt movement                  230

7.8  Genesis of salt deformation in the Tripoli-

     Gabes Basin                                             231

     A) Basinal configuration                                231

     B) Overburden loading (halokinesis)                     232

     C) Tectonics                                            233

 

 

8. THE GEOLOGY OF THE EARLY TERTIARY SEQUENCES

 

8.1  Introduction                                            235

8.2  Sedimentology of the El-Haria Formation                 236

     A) The Maastrichtian El-Haria Member                    238

     B) The Paleocene El-Haria Member                        239

8.3  Sedimentology of the Metlaoui Group                     241

    8.3.1  Introduction                                      241

    8.3.2  Sedimentology of the Chouabine Formation          242

           A) Dolomitic wackestone facies                    243

           B) Oolitic packstone-grainstone facies            244

           C) Lithoclast-bioclast mudstone facies            245

        8.3.2.1 Diagenesis of the Chouabine Formation        246

    8.3.3  Sedimentology of the Jirani Dolomite              247

        8.3.3.1 Origin of the Jirani Dolomite                249

    8.3.4  Sedimentology of the El-Garia Formation           251

        8.3.4.1 Diagenesis of the El-Garia Formation         257

                A) The marine phreatic environment           257

                B) Near-surface meteoric environments        259

                C) Burial (subsurface) diagenesis            261

        8.3.4.2 Conclusion                                   263

 

                 

9.DISCUSSION, SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

 

9.1  General Discussion                          264

9.2  Summary and Conclusion                       269

9.3   Recommended Future Work                       271

 

10.REFERENCES

 

11.APPENDICES

 

VOLUME TWO

 

 

Figures and Tables of Section 1

 

Fig 1.1 Location map showing the study area relative to the Pelagian Platform.

 

Fig 1.2 Map of both on land and offshore northwestern Libya showing Concession

Blocks (for offshore operators see text).

 

Fig 1.3 Seismic grid map showing coverage obtained by Agip (N.A.M.E) in Block NC-41.

 

Fig 1.4 Location map of wells drilled by the various companies (see text for details of each well).

 

Fig 1.5 Regional seismic lines employed in this study (coloured lines indicate seismic profiles included in the report).

 

Fig 1.6 Key to lithologic symbols and abbreviations used throughout the report.

 

Table 1.1 List of well logs used in the study area.

 

Table 1.2 List of seismic lines provided for this study.

 

Table 1.3 List of thin sections analyzed from different lithostratigraphic units in the Tripoli-Gabes Basin.

 

 

Figures of Section 2

 

Fig 2.1 Lithostratigraphic nomenclature used in this study (After Fournie, 1978).

 

Fig 2.2 A chart showing the lithostratigraphic nomenclature employed for the Tripoli-Gabes Basin (Tunisian) as compared to Sirt Basin (Libyan) Stratigraphy.

 

Fig 2.3 Schematic chart showing the relationship between the International chronos-tratigraphic divisions and the lithostratigraphy of the study area and immediate onshore of Libya and Tunisia.

 

Fig 2.4 The Phanerozoic chronostratigraphic scheme used in this study (After Harland et al., 1982).

 

Fig 2.5 Comparison between the lithostratigraphic nomenclature of the Metlaoui Group proposed by previous workers and the new scheme adopted in this study.

 

 

Figures of Section 3

 

Fig 3.1a Movement of Africa relative to Europe since the Early Mesozoic derived from Atlantic magnetic anomaly data. Dashed line: according to pitman and Talwany (1972) and Dewey et al. (1973). Full line: modification made by Biju-Duval et al.(1977). (Numbers are ages in millions of years).

 

Fig 3.1b Relative motion history of Africa, Iberia with respect to Eurasia from Early Jurassic to present time. Oblique Mercator projection with North Pole at 50 N, 155W. Position of continents at 190 Ma. Stages in Ma. Present latitudes and longitudes every 10 on continents. Interpolated flow-line: continuous lines. Pole positions describing motion of Africa with respect to Eurasia from stage to stage are also shown (circles connected by dashed lines with parameters of Savostin and others, 1985). (After Le-Pichon et al., 1986).

 

Fig 3.2 Simplified plate tectonic scheme during three stages (a: 190 Ma, b: 155 Ma, c: 130 Ma). Relative motion vectors in centimeters per annum. Positions of poles of rotation of plates shown with respect to Eurasia from Previous stage, Africa (AF), Iberia (IB). Schematic plate boundaries indicated by continuous line; open triangles, oceanic subduction; closed triangles, continental collision; double dotted line, oceanic accretion; hatched pattern, oceanic crust; dotted pattern, thinned continental crust. (After Le-Pichon et al., 1986).

 

Fig 3.2 (contd.) Simplified tectonic scheme during three stages (d: 110 Ma, e: 80 Ma, f: 65 Ma).

 

Fig 3.2 (contd.) Simplified plate tectonic scheme during three stages (g: 35 Ma, h: 20 Ma, i: 10 Ma).

 

Fig 3.2  (contd.) Present day position of continents.

 

Fig 3.3 Physiographic diagram of the Mediterranean (Heezan and Thorpe, 1970: Lamont-Doherty Geological Observatory).

 

Fig 3.4 Map of western Mediterranean area showing major geological features. (After Biju-Duval et al., 1974).

 

Fig 3.5 Map of the eastern Mediterranean area showing major geological features. (After Biju-Duval et al., 1974).

 

Fig 3.6 Age and distribution of the Mediterranean basins: 1. Mesozoic and Lower Tertiary mainly carbonate platform. 2. Mesozoic and Lower Tertiary presumed pelagic sediments along Alpine belt foredeep. 3. Front of Nappe.  4. Limit of the thick salt basins. 5. Main Tertiary to present deltas. 6. Oligocene and younger basins. 7. Miocene and younger basins. 8. Upper Miocene-Pliocene basins. 9. Minimum thickness of post-tectonic sediments. 10. Alpine folded belts (After Byramjee et al., 1975).

 

Fig 3.7 The main tectonic elements of the Pelagian platform (modified from tectonic map of Libya by: Agip (N.A.M.E).

 

Fig 3.8 Bathymetry map of southwest central Mediterranean. Contours in meters, (modified from Awar and Missallati, 1981).

 

Fig 3.9 Composite display of the tectonic evolution of the Pelagian Platform. (After Benelli et al., 1985).

 

Fig 3.10 Moho depth map derived from the results of the European geotraverse. (After Ben- Ferjani et al.,1990).

 

Fig 3.11 Surface and subsurface igneous occurrence in the Pelagian Platform and surrounding regions.

 

 

Figures and Plates of Section 4

 

Fig 4.1 Base map with well location used in this study (Longitude is East of Greenwich).

 

Fig 4.2 Isopach map of the Zebbag Formation (thickness and contours are in metres).

 

Fig 4.3 Diagram showing the penetrated section of the Zebbag Formation across the basin from south to north (Lithological symbols are given in fig.1.6).

 

Fig 4.4 Isopach map of the Kef Formation  (thickness and contours are in metres).

 

Fig 4.5 Diagram showing the penetrated sections of the Kef Formation across the basin.

 

Fig 4.6 Isopach map of the Abiod Formation (thicknesses and contours are in metres).

 

Fig 4.7 Diagram showing the penetrated sections of the Abiod Formation across the basin.

 

Fig 4.8 Isopach map of the Maastrichtian El-Haria A Member (thicknesses and contours are in metres).

 

Fig 4.9 Diagram showing the penetrated sections of the EL-Haria Formation (A and B members) across the basin.

 

Fig 4.10 Isopach map of the Paleocene EL-Haria ‘B’ Member (thicknesses are computed from seismic data).

 

Fig 4.11 Isopach map of the Ypresian Metlaoui Group (thicknesses are computed from seismic data).

 

Fig 4.12   Eocene subcrop map.

 

Fig 4.13 Map showing the vertical and lateral relationship between the Metlaoui Group Formations.

 

Fig 4.14 Isopach map of the Chouabine Formation  (thicknesses and contours in metres).

 

Fig 4.15 Diagram showing the penetrated section of the Metlaoui Group across the basin.

 

Fig 4.16 Diagram showing the penetrated section of the Metlaoui Group in an east-west direction.

 

Fig 4.17 Lithofacies map of the Chouabine Formation.

 

Fig 4.18 Isopach map of the Jirani Formation.

 

Fig 4.19 Lithofacies map of the Jirani Formation.

 

Fig 4.20 Isopach map of the EL-Garia Formation.

 

Fig 4.21 Lithofacies map of the EL-Garia Formation.

 

Fig 4.22 Map showing the vertical and lateral relationship between the Upper/Middle Eocene sequences.

 

Fig 4.23 Diagram showing the stratigraphic relation -ship between the Upper/Middle Eocene sequences across the basin.

 

Fig 4.24 Isopach map of the Upper/Middle Eocene sequence (Cherahil, Reinech Members and Souar Formation).

 

Fig 4.25 Complete Bouger gravity map of the study area.

 

Fig 4.26 Gravity (a), and Magnetic (b) profiles across the basin (for profile location see fig. 4.25 and fig. 4.27).

 

Fig 4.27 Total field magnetic intensity map of the study area.

 

Fig 4.28 Multichannel depth seismic profile (WT-84-28) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.29 Multichannel depth seismic profile (WT-84-10) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.30 Multichannel depth seismic profile (WT-84-30) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.31 Multichannel depth seismic profile (WT-84-13/1) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.32 Multichannel depth seismic profile (WT-84-13/2) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.33 Multichannel depth seismic profile (WT-84-06) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.34 Multichannel depth seismic profile (WT-84-15) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.35 Multichannel depth seismic profile (WT-84-22) and line drawing of the same line (for location see fig. 1.5).

 

Fig 4.36 Location map of the deep seismic line RS-86-01.

 

Fig 4.37 Multichannel, deep seismic profile (RS-86-01) and line drawing of the same line.

 

Fig 4.38 structure contour map of base Tertiary unconformity (data computed from seismic and contour interval = 250 m).

 

Fig 4.39 structure contour map of of the Metlaoui Group (data from seismic and contour interval = 100 m).

 

Fig  4.40 Map showing the main salt structures the basin as interpreted seismic data.

 

Plate 4.1 Dolomudstone with anhydrite filling micro-fractures. (Zebbag Formation, M1-NC41 at 3566.8m, XN, X25).

 

Plate 4.2 Aphanitic mosaic of anhydrite crystals filling collapse fractures in dark brown Dolomudstone. (Zebbag Formation, M1-NC41 at 3566.8, XN, X16).

 

Plate 4.3 Microfabric composed of alternating laminae of Planktonic forams and dark pelagic mudstone. (Kef Formation, M1-NC41 at 3102m, PPL, X25).

 

Plate 4.4 Enlarged view of part of Plate 4.3 (upper) showing details of planktonic forams and framboidal pyrite in brown lime-mudstone (note all forams chambers are occupied by a single crystal of clear calcite). (PPL, X40).

 

Plate 4.5 Planktonic and small Benthonic forams in a laminated dark grey argillaceous wackestone. (Abiod Formation, J1-NC41 at 1764.2m, PPL, X63).

 

Plate 4.6 Enlarged view of part of Plate 4.5 (above) showing a single Globotruncana embedded in a dark grey argillaceous wackestone. (PPL, X100)

 

Plate 4.7 Dolomitic argillite mudstone with bands of bituminous material displaying microflame structures. Scattered globigrinid & dolomite rhombs and abundant pyrite abundant. (EL-Haria A Mbr., C1-NC41 at 2943.5m, PPL,X40).

 

Plate 4.8 Rotaliid foraminifer in laminated brown shale.  The foram is almost filled in by pyrite except for the core of the chambers, which contain authigenic chert. (El-Haria ‘A’ Mbr; C1-NC41 at 2948.7m, PPL, X200).

 

Plate 4.9 Recrystallized planktonic forams embedded in a microfabric of sparry calcite mosaic. (El-Haria ‘B’ Mbr; C1-NC41 at 2791.1m, PPL, X400).

 

Plate 4.10 Anhydrite nodules that have suffered compaction enclosed by very dark (opaque) dolomite.  (Chouabine Fm., A2-NC41 at 2828m, XN, X25).

 

Plate 4.11 Detailed view of a single anhydrite nodule (top), it exhibits rosette texture formed by stacked laths with radiating habit. (XN, X100).

 

Plate 4.12 Bioclastic packstones with diverse allochem including abundant oyster fragments.  Detrital quartz grains are common.  (Chouabine Fm., A2-NC41 at 2807.5m, XN, X100).

 

Plate 4.13 Extensive micritization of mulluscan bivalve fragment by endolithic organisms.  (Chouabine Fm., A2-NC41 at 2807.5m, PPL, X200).

 

Plate 4.14 Oolitic grainstone texture showing poorly preserved microfabric.  Nuclei of micrite clasts and fine skeletal debris.  (Chouabine Fm., C1-NC35A at 2963.6m, PPL, X100).

 

Plate 4.15 Bolivina and planktonic organisms floating in lithoclastic texture.  (Chouabine Fm., B3-NC41 at 2694.8m, PPL, X160).

 

Plate 4.16 SEM micrograph showing primary pore space in nummulite grain surrounded by dense mudstone.  This type of porosity cannot form good reservoir rock.  (Chouabine Fm., B2-NC41 at 2613.1m).

 

Plate 4.17 SEM micrograph of wholly recrystallized planktonic test enclosed in clay matrix (illite). (Chouabine Fm., B3-NC41 at 2694.8m).

 

Plate 4.18 Partially dolomitized peloidal grainstone.  Peloids appear resistant to dolomitization resulting in a poor intergranular porosity.  (Jirani Fm., C2-NC41 at 2658.8m, PPL, X100).

 

Plate 4.19 Dolomitized bioclastic wackestone with relics of skeletal allochems preserved as enlarged vuggy porosity.  (Jirani Fm., B2-NC41 at 2583.5m, PPL, X25).

 

Plate 4.20 Completely dolomitized bioclastic packstone.  The dolomite occurs in two forms; a) matrix replacement mosaic and b) partially outlining skeletal molds. (Jirani Fm., B2-NC41 at 2583.5m, PPL, X200).

 

Plate 4.21 Enlarged view of part of Plate 4.20 (upper) showing the second generation of dolomite.  It is unimodal, coarse, rhombohedra and partially blocks moldic pore spaces. (PPL, X400).

 

Plate 4.22 SEM micrograph showing a planar rhombohedral dolomite mosaic with good intercrystalline porosity.  Hydrocarbon substance appears as ghost around many crystals.  (Jirani Fm., B3-NC41 at 2583.8m).

 

Plate 4.23 Close-up of Platte 4.22 displays the intercrystalline porosity in relation to the dolomite rhombs.

 

Plate 4.24 Bioclastic wackestone containing echinoid and oyster fragments.  Note the upper echinoid fragment with authigenic quartz filling pore spaces.  (El-Garia Fm., A2-NC41 at 2795m, XN, X25).

 

Plate 4.25 Dolomitic lime-clast packstone exhibits extensive wispy seams rich in insoluble pyrobitumens residue.  (El-Garia Fm., H1-NC41 at 3374.8m, PPL, X320).

 

Plate 4.26 Molluscan bivalves defined by thin micrite envelope and neomorphic drusy spar calcite replacing original aragonite.  (El-Garia Fm., C1-NC35A at 2640.5m, PPL, X63).

 

Plate 4.27 Dolomitized mudstone texture showing a polymodal rhombohedral dolomite mosaic.  Note the intercrystalline pore spaces (white).  (El-Garia Fm., C1-NC41 at 2545.1m, PPL, X1000).

 

Plate 4.28 Syntaxial overgrowth around echinoid spine in a bioclastic wackestone. (El-Garia Fm., B3-NC41 at 2446.4m, XN, X320).

 

Plate 4.29 Bioclastic packstone that displays partial dissolution of nummulite grain and its surroundings filled later by hydrocarbons (black). (El-Garia Fm., B3-NC41 at 2446.4m, XN, X100).

 

Plate 4.30 Nummulites and echinoid fragment enclosed in a poikiloptic cement mosaic.  (El-Garia Fm., B3-NC41 at 2446.4m, XN, X100).

 

Plate 4.31 Nummulite grain exhibits partial micritization and subsequent cementation by fine equant mosaic calcite.  (El-Garia Fm., B3-NC41 at 2477.1m, PPL, X25).

 

Plate 4.32 Nummulite packstone showing deformation due to burial compaction and subsequent cementation by blocky calcite mosaic.  (El-Garia Fm., B3-NC41 at 2543.9m, PPL, X25).

 

Plate 4.33 Bolivina with unidentified planktonic forams embedded in a nummulithoclastic texture.  (El-Garia Fm., B2-NC41 at 2517.4m, PPL, X63).

 

Plate 4.34 SEM micrograph showing drusy scalenohedral calcite cement lining the interior or a nummulite chamber. Note the preserved primary porosity.  (El-Garia Fm., C1-NC35A at 2628.3m).

 

Plate 4.35 Coarse calcite crystal and clusters of authigenic clay platelets reduce the primary porosity within a nummulite chamber.  (Compare with the top micrograph).  (El-Garia Fm., B3-NC41 at 2557.7m).

 

Plate 4.36 SEM micrograph showing a fine equant calcite mosaic covering the chambers and septae inside a nummulite test.  Intragranular porosity is largely unaffected. (El-Garia Fm., B3-NC41 at 25577.7m).

 

Plate 4.37 Close-up view of the top micrograph showing crystal details.  Note the intercrystalline pore spaces.

 

Plate 4.38 Single crystal of crinoid ossicle with characteristic central canal with other molluscan debris embedded in dark, cloudy lime-mud.  (Cherahil ‘A’ Mbr., P1-NC41 at 2484.2m, PPL, X63).

 

Plate 4.39 Foliated calcite structure of oyster shell fragment which is a major skeletal constituent of the Cherahil ‘A’ Member.  (A2-NC41 at 2462.8m, XN, X100).

 

Plate 4.40 Authigenic quartz (chert) filling borings in molluscan bivalve shell, probably oyster.  (Cherahil ‘A’, A2-NC41 at 2463.7m, XN, X63).

 

Plate 4.41 Phosphatic bioclast wackestone with abundant Rotaliid floating in neomorphic microspar calcite.  (Cherahil ‘A’, C1-NC41 at 2345.5m, PPL, X100).

 

Plate 4.42 Hand specimen comprising nummulitic packstone displaying well-preserved and well-sorted nummulites in lime mudstone.  Note the excellent preservation of intragranular porosity.  (Reinech Member, F2-NC41 at 2411.9m, sample width is 5cm).

 

Plate 4.43 Bivalve fragments in dark-grey lime-mud matrix.  Note the solution enlarged pore spaces. (Reinech Member, K1-NC41 at 2577.7m, XN, X25).

 

Plate 4.44 Original aragonite skeleton of bivalve shells altered to calcite by complete dissolution and later infilling of the leached void.  (Cherahil ‘B’ Member, F2-NC41 at 2219.9m, XN, X160).

 

Plate 4.45 Crinoid ossicle with bioclast fragment embedded in original mud matrix that has been completely obliterated by recrystallization.  Note the irregular stylolite seam across the sample.  (Cherahil ‘B’ Member, C1-NC35A at 2186.4m, PPL, X320).

 

Plate 4.46 Pyritic globigrinid shale.  Note the blocky calcite cement that occupies most of the skeletal cavities. (Souar Fm., B3-NC41 at 2445.1m, PPL, X400).

 

Plate 4.47 Bolivinidis in dolomitic laminated shale.  Framboidal pyrite is abundant and seen here infilling foram chambers. (Souar Fm., B3-NC41 at 2429.6m, XN, X400).

 

 

Figures and Tables of Section 5

 

Fig 5.1 Schematic diagram of reconstructed (loaded) sedimentary section and backstripped (unloaded) sedimentary section.  (After Steckler and Watts, 1978).

 

Fig 5.2 Idealised porosity depth curves for different lithologies with parameters showing the exponential relationship between porosity and depth for normal pressured lithologies and the density assumed for the sediment grains in the same lithology.  (Modified from Angevine et al; 1990, Sclater and Christie, 1980).

 

Fig 5.3 Uncorrected burial history curves (top) and curves corrected for compaction (bottom) for the same well: F1-NC41.

 

Fig 5.4 Sedimentation rate plot versus time. Solid line represents sediments uncorrected for compaction.  Dotted line represents decompacted sedimentation rates.  (Well: F1-NC41).

 

Fig 5.5 Biostratigraphic zonation scheme for the Tripoli-Gabes Basin as proposed by Duronio, 1985.

 

Fig 5.6 Paleobathymetry data for well C1-NC35A (after Cococcetta, 1981).

 

Fig 5.7 Calculated basement subsidence curves at different localities across the basin.

 

Fig 5.8 Schematic diagram showing the principal features of the stretching model of McKenzie (1978).  a) Initial conditions showing the lithosphere (including a crust) in thermal equilibrium.  b) Uniform extension during which the lithosphere is extended and thinned.  Since isostatic equilibrium is assumed, the extension is associated with an initial subsidence that depends on the initial crustal thickness assumed.  c) Cooling following the extension at the hot asthenosphere cools.  The cooling is associated with a thermal subsidence, which decays exponentially with time (After Watts, 1981).

 

Fig 5.9 Theoretical subsidence curves based on McKenzie’s (1978) model for different values of stretching factor Beta. (Calculation was made assuming a 125km lithosphere and a 35km crust).

 

Fig 5.10 Comparison between the burial history curves (correct and uncorrected for compaction) and the tectonic subsidence curve (backstripped) at the example well F1-NC41.

 

Fig 5.11 Comparison between the predictive subsidence model (Beta) and the calculated tectonic subsidence curves at the southern margin of the basin (see legend for well location).

 

Fig 5.12 Comparison between the predictive subsidence model (Beta) and the calculated tectonic subsidence curves at the central parts of the basin (see legend for well location).

 

Fig 5.13 Comparison between the predictive subsidence model (Beta) and the calculated tectonic subsidence curves at the central parts of the basin (see legend for well location).

 

Fig 5.14 Comparison between the predictive subsidence model (Beta) and the calculated tectonic subsidence curves at the northern margin of the basin (see legend of well location and compare with Fig. 5.11).

 

Fig 5.15 Basement subsidence map for the time interval 83-73 my (Campanian).

 

Fig 5.16 Basement subsidence map for the time interval 73-54.9 my (Maastrichian/ Paleocene).

 

Fig 5.17 Basement subsidence map for the time internal 54.9 – 50.5 my (Ypresian).

 

Fig 5.18 Basement subsidence map for the time interval 50.5-38 my (Upper/Middle Eocene).

 

Fig 5.19 Basement subsidence map for the time interval 38-24.6 my (Oligocene).

 

Fig  5.20 Basement subsidence map for the time interval 24.6-14.4 my (Lower Miocene).

 

Fig 5.21 Basement subsidence map for the time interval 14.4-11.3 my (Middle Miocene).

 

Fig  5.22 Basement subsidence map for the time interval 11.3-5.1 my (Upper Miocene).

 

Fig  5.23 Cumulative basement subsidence map at 54.9 my (Datum = Base Tertiary).

 

Fig  5.24 Cumulative basement subsidence map at 50.5 my (Datum = Base Tertiary).

 

Fig  5.25 Cumulative basement subsidence map at 38 my (Datum = Base Tertiary).

 

Fig  5.26 Cumulative basement subsidence map at 24.6 my (Datum = Base Tertiary).

 

Fig  5.27 Cumulative basement subsidence map at 14.4 my (Datum = Base Tertiary).

 

Fig  5.28 Cumulative basement subsidence map at 11.3 my (Datum = Base Tertiary).

 

Fig  5.29 Cumulative basement subsidence map at 5.1 my (Datum = Base Tertiary).

 

Table 5.1 Summary of physical parameters at F1-NC41 well.

 

 

Figures and Tables at Section 6

 

Fig  6.1 Correction curve for log temperature readings (modified from Hood et al., 1975).

 

Fig. 6.2 Temperature gradient plot for Well C2-NC41.  Note the difference between the log and the corrected temperatures and the close relationship between the corrected and the test recorded borehole temperatures.

 

Fig 6.3 Average geothermal gradient map for the study area (oC/100m).

 

Fig 6.4 Plots of the observed thermal maturity values (TAI) for eight wells in the basin using the Lower Eocene top as a datum line.  Note the uniform trend of the observed maturities.

 

Fig 6.5 TAI/Ro relationship graph as suggested by Agip, (1985).

 

Fig  6.6 Decompacted burial history curves (a), observed (b) and predicted maturities (c) at A1-NC41 well.

 

Fig 6.7 Location map of the eight wells used to derive organic maturity data for the basin.

 

Fig 6.8 Relationship between (TA1/Log TTI) at eight wells in the basin.  The best square fit line represents the equation: TA1 = 0.3132 + 0.49705 (Log TTI).

 

Fig 6.9 a) Decompacted burial history, b) observed maturity and c) predicted maturity at A1-NC41 (compare the maturities in this figure with that of Fig. 6.6).

 

Fig 6.10 a) Decompacted burial history, b) observed maturity and c) predicted maturity at B1-NC41.

 

Fig 6.11 a) Decompacted burial history, b) observed maturity and c) predicted maturity at B2-NC41.

 

Fig 6.12 a) Decompacted burial history, b) observed maturity and c) predicted maturity at C1-NC41.

 

Fig 6.13 a) Decompacted burial history, b) observed maturity and c) predicted maturity at C2-NC41.

 

Fig 6.14 a) Decompacted burial history, b) observed maturity and c) predicted maturity at D2-NC41.

 

Fig 6.15 a) Decompacted burial history, b) observed maturity and c) predicted maturity at F1-NC41.

 

Fig 6.16 a) Decompacted burial history, b) observed maturity and c) predicted maturity at H1-NC41.

 

Fig 6.17 Organic maturity of the Abiod Formation referred to the end of the Miocene.

 

Fig 6.18 Organic maturity of the Abiod Formation referred to the present time.

 

Fig 6.19 Sedimentation rate map of the Abiod Formation (cm/1000y).

 

Fig 6.20 Organic maturity of the El-Haria Formation referred to the end of the Miocene.

 

Fig 6.21 Organic maturity of the El-Haria Formation referred to the present time.

 

Fig 6.22 Sedimentation rate map of the El-Haria Formation (cm/1000y).

 

Fig 6.23 Organic maturity of the Metlaoui Group referred to the end of the Miocene.

 

Fig 6.24 Organic maturity of the Metlaoui Group referred to the present time.

 

Fig 6.25 Sedimentation rate map of the Metlaoui Group (cm/1000y).

 

Table 6.1 Comparison between the DST/PT recorded temperatures and those obtained by correcting log recorded BHT according to Fertl-Wichmann (1977) and Hood et al., (1975).

 

Table 6.2 Calculated static formation temperature versus depths of the wells studied.

 

Table 6.3 Measured thermal alteration index (TAI) for eight wells in the Tripoli-Gabes Basin.

 

Table 6.4 Temperature factors for different temperature intervals (after Waples, 1980).

 

Table 6.5 Maturation values obtained by Lopatin modeling at different sites based on present time and tat the end of the Miocene and sedimentation rates.

 

 

Figures and Tables of Section 7

 

Fig 7.1 The three principal models normally invoked to explain the origin of major evaporite basins. a) The shallow basin-shallow water model which requires basinal subsidence to account for thick evaporite deposits; b) the deep basin-deep water model, with influx taking place in a less dense brine layer above a deep, denser brine layer; c) the deep basin-shallow water model (or deep desiccating basin), with shallow evaporites forming far below normal sea level (after Jenyon, 1986).

 

Fig 7.2 A model for deep-water evaporite deposition. Four stages in the filling of such a basin are shown (after Schmalz, 1969).

 

Fig 7.3 Postulated patterns of evaporite distribution.  (A) The bull’s-eye pattern is typical of deposition in completely enclosed basins.  (B) The teardrop pattern is typical of deposition in restricted basins.

 

Fig 7.4 Sketch map of possible Triassic facies distribution (after Salaj, 1978).

 

Fig 7.5 Salt structures and their distribution in the Tripoli-Gabes Basin (Agip, 1990).

 

Fig 7.6 Salt movements as studied in three wells within the basin.

 

Table 7.1 Order of precipitation from sea-water (After Schreiber and Marshak, 1981).

 

 

Figures of Section 8

 

Fig 8.1 The type section of the Metlaoui Group at B2-NC41 as defined by Hammuda et al., (1985).

 

Fig 8.2 Schematic diagram showing the relationship between the global sea level curve and sediments of the El-Haria, Metlaoui Group and Souar Formation.

 

Fig 8.3 Depositional model for the Chouabine Formation (modified from Read, 1982).

 

Fig 8.4 Dolomitization by seepage refluxion model as suggested by Adams and Rhodes, (1960).

 

Fig 8.5 Depositional model for the El-Garia Formation (modified from Moody and Grant, 1989).

 

Fig 8.6 The main diagenetic features and environments of the El-Garia Formation.